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1 Point Set Topology

1.1 Topological spaces

A metric space defines a collection of open sets. To consider spaces without a metric, we
define a collection of open sets with the same properties. This yields a more general theory
than the theory of metric spaces.

Definition 1.1. Let X be a set. A topology on X is a a collection T of open subsets of
X such that

1. ∅, X ∈ T

2. If A ⊆ T , then
⋃

U∈A U ∈ T

3. If U1, . . . , Um ∈ T ¡ then
⋂m

i=1 Ui ∈ T .

The pair (X, T ) is called a topological space.1

Definition 1.2. A subset C ⊆ X is closed if X \ C (denoted Cc) is open.

Example 1.1. Every metric space is a topological space.

Example 1.2. For every set X, T = P(X) is called the discrete topology.

Example 1.3. For every set X, T = {∅, X} is called the trivial topology.

Example 1.4. For every set X, T = {U ⊆ X : U = ∅ or U c is finite} is called the
cofinite topology,

Example 1.5. If (X, T ) is a topological space, and Y ⊆ X¡ then TY = {U ∩ Y : U ∈ T }
is called the relative topology of T on Y .

1People usually just refer to X as the topological space when T is understood.

1



1.2 Closure and convergence

Let (X, T ) be a topological space.

Definition 1.3. If Y ⊆ X, then V ⊆ Y is relatively open (resp. closed) in Y if
V = U ∩ Y , where U is open (resp. closed).

Definition 1.4. If A ⊆ X, Ao =
⋃
{U : U ⊆ A,U open} is the interior of A.

This is the largest open set contained in A.

Definition 1.5. If A ⊆ X, A =
⋂
{C : C ⊇ A,C closed} is the closure of A.

This is the smallest closed set contained in A.

Definition 1.6. A ⊆ X is dense if A = X.

Definition 1.7. The boundary of A ⊆ X is ∂A; = A \Ao.

Definition 1.8. A ⊆ X is nowhere dense if (A)o = ∅.

Definition 1.9. A neighborhood of x ∈ X is any U ∈ T such that x ∈ U . A neighbor-
hood of A ⊆ X is any U ∈ T such that A ⊆ U .

Definition 1.10. A point of closure of A is a point x ∈ X such that U ∩A 6= ∅ for all
neighborhoods U of x.

Proposition 1.1. A is the set of points of closure of A.

Proof. (⊇): Let x be a point of closure and let C ⊇ A. We want to show x ∈ C. If instead
x ∈ Cc, then Cc is a neighborhood of x disjoint from A.So x is not a point of closure, which
is a contradiction.

(⊆): Let x be a non-point of closure. Then there exists a neighborhood U 3 x such
that U ∩A = ∅. So U c is closed, x /∈ U c, and U c ⊇ A. Then x /∈ A.

Definition 1.11. Let (xn)∞n=1 be a sequence in X. Then xn converges to x in T (written
xn → x) if for every neighborhood U of x, there exists an n0 such that xn ∈ U for all
n ≥ n0.

Remark 1.1. Here are a few caveats. Convergence does not characterize points of closure
like it does for metric spaces. Also, limits of sequences are not necessarily unique in
topological spaces.
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1.3 Generating topologies and bases

Definition 1.12. If T1, T2 are two topological spaces on X, then T2 is stronger (resp.
weaker) than T1 if T2 ⊇ T1 (resp. T2 ⊆ T1).

Lemma 1.1. Any intersection of topologies is a topology.

Corollary 1.1. Any E ⊆P(X) generates a topology T (E).

In this case, E is called a sub-base for the topology T (E).

Remark 1.2. Any family generates a unique topology, but a topology may be generated
by many different families.

Definition 1.13. A neighborhood base at x ∈ X is a collection N of neighborhoods of
x such that for all neighborhoods U 3 x, ther exists a V ∈ N such that x ∈ V ⊆ U . A
base for T is a family which includes a neighborhood base around every point.

Proposition 1.2. Let E ⊆ T . Then E is a base for T if and only if every nonempty U ∈ T
is a union of members of E.

Proof. ( =⇒ ): Assume E is a base, and let ∅ 6= U ∈ T . THen for all x ∈ U , there exists
a Vx ∈ E such that x ∈ Vx ⊆ U . So U =

⋃
x∈U Vx.

(⇐= ): Let x ∈ U ∈ T . Then U =
⋃

V ∈E ′ V for some E ′ ⊆ E . So x ∈ for some V ∈ E ′.
Now x ∈ V ⊆ U .

These two characterizations generalize the notion of open balls in a metric space.

Proposition 1.3. If E ⊆P(X), then E is a base for some T if and only if

1.
⋃
E = X,

2. For all U, V ∈ E and for all x ∈ U∩V , there exists a W ∈ E such that x ∈ E ⊆ U∩V .

Proof. ( =⇒ ): Try doing this direction yourself.
( ⇐= ): Let T = {V ⊆ X : ∀x ∈ V,∃U ∈ E s.t. x ∈ U ⊆ V }. Check that T is a

topology, and then check that E is a base for T : If V1, V2 ∈ T and x ∈ V1 ∩ V2, then there
exist U1, U2 ∈ E such that x ∈ Ui ⊆ Vi for i = 1, 2. By the second property, there exists a
W ∈ E such that x ∈ W ⊆ U1 ∩ U2 ⊆ V1 ∩ V2. So V1 ∩ V2 ∈ T . Finally, E ⊆ T , and the
definition of T means that E concludes a neighborhood base at every point.

Unlike with σ-algebras, this means that it is easy to see how we generate a topology.

Corollary 1.2. If E ⊆P(X), then T (E) = {∅, X}∪{unions of finite intersections from E}.

Proof. Just show that T (E) is a topology.
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Example 1.6. F ⊆ RR. For every m ∈ N, t1, . . . , tm ∈ R, x1, . . . , xm ∈ R, and ε > 0,
define U(t1, . . . , tm, x1, . . . , xm, ε) := {f ∈ F : |xi − f(ti)| < ε ∀i ≤ m}. Let E be the set of
all such U(t1, . . . , tm, x1, . . . , xm, ε). As an exercise, show that this is a base for T (E). We
claim that if (fn)n∈N is a sequence in F , then fn → f in T (E) iff fn → f pointwise. Next
time, we will show that this topology is not defined by a metric.
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